Ask a Question

Prefer a chat interface with context about you and your work?

Some connections between discrepancy, finite gap properties, and pair correlations

Some connections between discrepancy, finite gap properties, and pair correlations

Abstract A generic uniformly distributed sequence $$(x_n)_{n \in \mathbb {N}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:msub> </mml:math> in [0, 1) possesses Poissonian pair correlations (PPC). Vice versa, it has been proven that a sequence with PPC is uniformly distributed. …