Stepanov's Method Applied to Binomial Exponential Sums
Stepanov's Method Applied to Binomial Exponential Sums
For a prime p and binomial axk + bxl with 1 ≤ l < k < 1/32(p – 1)2/3, we use Stepanov's method to obtain the bound |Σp−1x=1ep(axk + bxl)| ≪ max {1, lΔ−1/3}1/4k1/4p3/4, where Δ = (k – l)/(k, l, p – 1).