Ask a Question

Prefer a chat interface with context about you and your work?

Speed of convergence of complementary probabilities on finite group

Speed of convergence of complementary probabilities on finite group

Let function P be a probability on a finite group G, i.e. $P(g)\geq0\ $ $(g\in G),\ \sum\limits_{g}P(g)=1$ (we write $\sum\limits_{g}$ instead of $\sum\limits_{g\in G})$. Convolution of two functions $P, \; Q$ on group $G$ is \linebreak $ (P*Q)(h)=\sum\limits_{g}P(g)Q(g^{-1}h)\ \ (h\in G)$. Let $E(g)=\frac{1}{|G|}\sum\limits_{g}g$ be the uniform (trivial) probability on the …