Geometric invariant theory for principal three-dimensional subgroups acting on flag varieties
Geometric invariant theory for principal three-dimensional subgroups acting on flag varieties
Let $G$ be a semisimple complex Lie group. In this article, we study Geometric Invariant Theory on a flag variety $G/B$ with respect to the action of a principal 3-dimensional simple subgroup $S\subset G$. We determine explicitly the GIT-equivalence classes of $S$-ample line bundles on $G/B$. We show that, under …