Ask a Question

Prefer a chat interface with context about you and your work?

Further on Inequalities for <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <mi>h</mi> <mo>−</mo> <mi>m</mi> </mrow> </mfenced> </math>-Convex Functions via <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>k</mi> </math>-Fractional Integral Operators

Further on Inequalities for <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <mi>h</mi> <mo>−</mo> <mi>m</mi> </mrow> </mfenced> </math>-Convex Functions via <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>k</mi> </math>-Fractional Integral Operators

The purpose of this article is to demonstrate new generalized k ‐fractional Hadamard and Fejér–Hadamard integral inequalities for ( α , h − m )‐convex functions. To prove these inequalities, k ‐fractional integral operators including the generalization of the Mittag–Leffler function are used. The results presented in this article can …