Ask a Question

Prefer a chat interface with context about you and your work?

The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups

The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups

Abstract We show that the β-numbers of intrinsic Lipschitz graphs of Heisenberg groups <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mi>ℍ</m:mi><m:mi>n</m:mi></m:msub></m:math> {\mathbb{H}_{n}} are locally Carleson integrable when <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mi>n</m:mi><m:mo>≥</m:mo><m:mn>2</m:mn></m:mrow></m:math> {n\geq 2} . Our main bound uses a novel slicing argument to decompose intrinsic Lipschitz graphs into graphs of Lipschitz functions. A key ingredient in our proof …