Ask a Question

Prefer a chat interface with context about you and your work?

Study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow…

Study of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow…

We present a measurement of the branching fractions of the Cabibbo favored ${\overline{B}}^{0}\ensuremath{\rightarrow}{D}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ and the Cabibbo suppressed ${\overline{B}}^{0}\ensuremath{\rightarrow}{D}^{+}{K}^{\ensuremath{-}}$ decays. We find $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{D}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})=(2.48\ifmmode\pm\else\textpm\fi{}0.01\ifmmode\pm\else\textpm\fi{}0.09\ifmmode\pm\else\textpm\fi{}0.04)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ and $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{D}^{+}{K}^{\ensuremath{-}})=(2.03\ifmmode\pm\else\textpm\fi{}0.05\ifmmode\pm\else\textpm\fi{}0.07\ifmmode\pm\else\textpm\fi{}0.03)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ decays, where the first uncertainty is statistical, the second is systematic, and the third uncertainty is due to the ${D}^{+}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{+}$ branching fraction. The ratio of branching …