Ask a Question

Prefer a chat interface with context about you and your work?

Prescribing Ricci curvature on homogeneous spaces

Prescribing Ricci curvature on homogeneous spaces

Abstract The prescribed Ricci curvature problem in the context of G -invariant metrics on a homogeneous space <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mi>M</m:mi><m:mo>=</m:mo><m:mrow><m:mi>G</m:mi><m:mo>/</m:mo><m:mi>K</m:mi></m:mrow></m:mrow></m:math> {M=G/K} is studied. We focus on the metrics at which the map <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mi>g</m:mi><m:mo>↦</m:mo><m:mrow><m:mi>Rc</m:mi><m:mo>⁡</m:mo><m:mrow><m:mo stretchy="false">(</m:mo><m:mi>g</m:mi><m:mo stretchy="false">)</m:mo></m:mrow></m:mrow></m:mrow></m:math> {g\mapsto\operatorname{Rc}(g)} is, locally, as injective and surjective as it can be. Our main result is …