Ask a Question

Prefer a chat interface with context about you and your work?

Tensor network simulation of the ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> )-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> nonlinear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>σ</…

Tensor network simulation of the ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> )-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> nonlinear <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>σ</…

We perform a tensor network simulation of the (1+1)-dimensional $O(3)$ nonlinear $\sigma$-model with $\theta=\pi$ term. Within the Hamiltonian formulation, this field theory emerges as the finite-temperature partition function of a modified quantum rotor model decorated with magnetic monopoles. Using the monopole harmonics basis, we derive the matrix representation for this …