On graphs with minimal distance signless Laplacian energy
On graphs with minimal distance signless Laplacian energy
Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"> <m:mrow> <m:msubsup> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mn>1</m:mn> <m:mi>Q</m:mi> </m:msubsup> <m:mo>≥</m:mo> <m:msubsup> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mn>2</m:mn> <m:mi>Q</m:mi> </m:msubsup> <m:mo>≥</m:mo> <m:mo>⋯</m:mo> <m:mo>≥</m:mo> <m:msubsup> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mi>n</m:mi> <m:mi>Q</m:mi> </m:msubsup> </m:mrow> </m:math> \rho _1^Q \ge \rho …