High and low perturbations of Choquard equations with critical reaction and variable growth
High and low perturbations of Choquard equations with critical reaction and variable growth
<p style='text-indent:20px;'>We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $\end{document} </tex-math></disp-formula></p><p …