VMO-Teichmüller space on the real line
VMO-Teichmüller space on the real line
An increasing homeomorphism \(h\) on the real line \(\mathbb{R}\) is said to be strongly symmetric if it can be extended to a quasiconformal homeomorphism of the upper half plane \(\mathbb{U}\) onto itself whose Beltrami coefficient \(\mu\) induces a vanishing Carleson measure \(|\mu(z)|^2/y\,dx\,dy\) on \(\mathbb{U}\). We will deal with the class …