Ask a Question

Prefer a chat interface with context about you and your work?

Learning knot invariants across dimensions

Learning knot invariants across dimensions

We use deep neural networks to machine learn correlations between knot invariants in various dimensions. The three-dimensional invariant of interest is the Jones polynomial J(q) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>J</mml:mi><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math> , and the four-dimensional invariants are the Khovanov polynomial \text{Kh}(q,t) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext mathvariant="normal">Kh</mml:mtext><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math> …