Ask a Question

Prefer a chat interface with context about you and your work?

Geometric bounds on the fastest mixing Markov chain

Geometric bounds on the fastest mixing Markov chain

Abstract In the Fastest Mixing Markov Chain problem, we are given a graph $$G = (V, E)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>V</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and desire the discrete-time Markov chain with smallest mixing time $$\tau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> subject to having equilibrium distribution …