Equidistribution of zeros of some polynomials related to cyclic functions
Equidistribution of zeros of some polynomials related to cyclic functions
Abstract In the study of the cyclicity of a function f in reproducing kernel Hilbert spaces an important role is played by sequences of polynomials $$\{p_n\}_{n\in \mathbb {N}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo>{</mml:mo><mml:msub><mml:mi>p</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>}</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>∈</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:math> called optimal polynomial approximants (o.p.a.). For many such spaces and when the functions f generating those o.p.a. are polynomials without …