Ask a Question

Prefer a chat interface with context about you and your work?

Density conditions with stabilizers for lattice orbits of Bergman kernels on bounded symmetric domains

Density conditions with stabilizers for lattice orbits of Bergman kernels on bounded symmetric domains

Abstract Let $$\pi _{\alpha }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>π</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:math> be a holomorphic discrete series representation of a connected semi-simple Lie group G with finite center, acting on a weighted Bergman space $$A^2_{\alpha } (\Omega )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mi>A</mml:mi><mml:mi>α</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mi>Ω</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> on a bounded symmetric domain $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ω</mml:mi></mml:math> , of formal dimension $$d_{\pi _{\alpha …