On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative
On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative
In this work, we consider the nonlocal obstacle problem with a given obstacle $\psi$ in a bounded Lipschitz domain $\Omega$ in $\mathbb{R}^{d}$, such that $\mathbb{K}_\psi^s=\{v\in H^s_0(\Omega):v\geq\psi \text{ a.e. in }\Omega\}\neq\emptyset$, given by \[u\in\mathbb{K}_\psi^s:\langle\mathcal{L}_au,v-u\rangle\geq\langle F,v-u\rangle\quad\forall v\in\mathbb{K}^s_\psi,\] for $F\in H^{-s}(\Omega)$, the dual space of $H^s_0(\Omega)$, $0<s<1$. The nonlocal operator $\mathcal{L}_a:H^s_0(\Omega)\to H^{-s}(\Omega)$ is …