Ask a Question

Prefer a chat interface with context about you and your work?

Topological mirror symmetry for rank two character varieties of surface groups

Topological mirror symmetry for rank two character varieties of surface groups

Abstract The moduli spaces of flat $${\text{SL}}_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>SL</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:math> - and $${\text{PGL}}_2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>PGL</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:math> -connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a …