Ask a Question

Prefer a chat interface with context about you and your work?

Applications of Orlicz–Pettis theorem in vector valued multiplier spaces of generalized weighted mean fractional difference operators

Applications of Orlicz–Pettis theorem in vector valued multiplier spaces of generalized weighted mean fractional difference operators

Abstract In this study, we deal with some new vector valued multiplier spaces $S_{G_{h}}(\sum_{k}z_{k})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>S</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mi>h</mml:mi></mml:msub></mml:msub><mml:mo>(</mml:mo><mml:msub><mml:mo>∑</mml:mo><mml:mi>k</mml:mi></mml:msub><mml:msub><mml:mi>z</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:math> and $S_{wG_{h}}(\sum_{k}z_{k})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>S</mml:mi><mml:mrow><mml:mi>w</mml:mi><mml:msub><mml:mi>G</mml:mi><mml:mi>h</mml:mi></mml:msub></mml:mrow></mml:msub><mml:mo>(</mml:mo><mml:msub><mml:mo>∑</mml:mo><mml:mi>k</mml:mi></mml:msub><mml:msub><mml:mi>z</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:math> related with $\sum_{k}z_{k}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mo>∑</mml:mo><mml:mi>k</mml:mi></mml:msub><mml:msub><mml:mi>z</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:math> in a normed space Y . Further, we obtain the completeness of these spaces via weakly unconditionally Cauchy series in Y and $Y^{*}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>Y</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math> …