Ask a Question

Prefer a chat interface with context about you and your work?

Sawyer-type inequalities for Lorentz spaces

Sawyer-type inequalities for Lorentz spaces

Abstract The Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type estimate $$\begin{aligned} \left\| \frac{Mf}{v}\right\| _{L^{1,\infty }(uv)} \le C_{u,v} \Vert f \Vert _{L^{1}(u)}, \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msub> <mml:mfenced> <mml:mfrac> <mml:mrow> <mml:mi>Mf</mml:mi> </mml:mrow> <mml:mi>v</mml:mi> </mml:mfrac> </mml:mfenced> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> …