Dispersive estimates for quantum walks on 1D lattice
Dispersive estimates for quantum walks on 1D lattice
We consider quantum walks with position dependent coin on 1D lattice $\mathbb{Z}$. The dispersive estimate $\| U^{t} P_{c} u_0\|_{l^{\infty}} \lesssim (1+|t|)^{-1/3} \|u_0\|_{l^1}$ is shown under $l^{1,1}$ perturbation for the generic case and $l^{1,2}$ perturbation for the exceptional case, where $U$ is the evolution operator of a quantum walk and $P_{c}$ …