Deformations and moduli of irregular canonical covers with $$K^2=4p_g-8$$
Deformations and moduli of irregular canonical covers with $$K^2=4p_g-8$$
Abstract In this article, we study the moduli of irregular surfaces of general type with at worst canonical singularities satisfying $$K^2 = 4p_g-8$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> , for any even integer $$p_g\ge 4$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> …