Learning the temporal evolution of multivariate densities via normalizing flows
Learning the temporal evolution of multivariate densities via normalizing flows
In this work, we propose a method to learn multivariate probability distributions using sample path data from stochastic differential equations. Specifically, we consider temporally evolving probability distributions (e.g., those produced by integrating local or nonlocal Fokker-Planck equations). We analyze this evolution through machine learning assisted construction of a time-dependent mapping …