Extension Theory for Braided-Enriched Fusion Categories
Extension Theory for Braided-Enriched Fusion Categories
Abstract For a braided fusion category $\mathcal{V}$, a $\mathcal{V}$-fusion category is a fusion category $\mathcal{C}$ equipped with a braided monoidal functor $\mathcal{F}:\mathcal{V} \to Z(\mathcal{C})$. Given a fixed $\mathcal{V}$-fusion category $(\mathcal{C}, \mathcal{F})$ and a fixed $G$-graded extension $\mathcal{C}\subseteq \mathcal{D}$ as an ordinary fusion category, we characterize the enrichments $\widetilde{\mathcal{F}}:\mathcal{V} \to Z(\mathcal{D})$ …