$ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values
$ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values
<p style='text-indent:20px;'>We prove a global <inline-formula><tex-math id="M1">\begin{document}$ W^{2, p} $\end{document}</tex-math></inline-formula>-estimate for the viscosity solution to fully nonlinear elliptic equations <inline-formula><tex-math id="M2">\begin{document}$ F(x, u, Du, D^{2}u) = f(x) $\end{document}</tex-math></inline-formula> with oblique boundary condition in a bounded <inline-formula><tex-math id="M3">\begin{document}$ C^{2, \alpha} $\end{document}</tex-math></inline-formula>-domain for every <inline-formula><tex-math id="M4">\begin{document}$ \alpha\in (0, 1) $\end{document}</tex-math></inline-formula>. Here, the …