Ask a Question

Prefer a chat interface with context about you and your work?

Enhanced hybridization in the electronic ground state of the intercalated honeycomb iridate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ag</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi>Li</mml:mi><mml:msub><mml:mi>Ir</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

Enhanced hybridization in the electronic ground state of the intercalated honeycomb iridate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ag</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi>Li</mml:mi><mml:msub><mml:mi>Ir</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

We use x-ray spectroscopy at Ir L$_3$/L$_2$ absorption edge to study powder samples of the intercalated honeycomb magnet Ag$_3$LiIr$_2$O$_6$. Based on x-ray absorption and resonant inelastic x-ray scattering measurements, and exact diagonalization calculations including next-neighbour Ir-Ir electron hoping integrals, we argue that the intercalation of Ag atoms results in a …