A new conformable nabla derivative and its application on arbitrary time scales
A new conformable nabla derivative and its application on arbitrary time scales
Abstract In this article, we introduce a new type of conformable derivative and integral which involve the time scale power function $\widehat{\mathcal{G}}_{\eta }(t, a)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mover> <mml:mi>G</mml:mi> <mml:mo>ˆ</mml:mo> </mml:mover> <mml:mi>η</mml:mi> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> <mml:mo>)</mml:mo> </mml:math> for $t,a\in \mathbb{T}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>a</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>T</mml:mi> </mml:math> …