Ask a Question

Prefer a chat interface with context about you and your work?

Spanning trees in random regular uniform hypergraphs

Spanning trees in random regular uniform hypergraphs

Let $\mathcal{G}_{n,r,s}$ denote a uniformly random $r$-regular $s$-uniform hypergraph on the vertex set $\{1,2,\ldots, n\}$. We establish a threshold result for the existence of a spanning tree in $\mathcal{G}_{n,r,s}$, restricting to $n$ satisfying the necessary divisibility conditions. Specifically, we show that when $s\geq 5$, there is a positive constant $\rho(s)$ …