Ask a Question

Prefer a chat interface with context about you and your work?

Galois module structure of square power classes for biquadratic extensions

Galois module structure of square power classes for biquadratic extensions

For a Galois extension $K/F$ with $\text{char}(K)\neq 2$ and $\text{Gal}(K/F) \simeq \mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$, we determine the $\mathbb{F}_2[\text{Gal}(K/F)]$-module structure of $K^\times/K^{\times 2}$. Although there are an infinite number of (pairwise non-isomorphic) indecomposable $\mathbb{F}_2[\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}]$-modules, our decomposition includes at most $9$ indecomposable types. This paper marks the first time that the Galois module structure …