Ask a Question

Prefer a chat interface with context about you and your work?

Analytic semigroups generated by Dirichlet-to-Neumann operators on manifolds

Analytic semigroups generated by Dirichlet-to-Neumann operators on manifolds

Abstract We consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>(</mml:mo> <mml:mi>∂</mml:mi> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of continuous functions on the boundary $$\partial M$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> of a compact manifold $$\overline{M}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> …