Ask a Question

Prefer a chat interface with context about you and your work?

The Lawson number of a semitopological semilattice

The Lawson number of a semitopological semilattice

Abstract For a Hausdorff topologized semilattice X its Lawson number $$\bar{\Lambda }(X)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi>Λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is the smallest cardinal $$\kappa $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>κ</mml:mi> </mml:math> such that for any distinct points $$x,y\in X$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>x</mml:mi> …