Ask a Question

Prefer a chat interface with context about you and your work?

Bose–Hubbard models with on-site and nearest-neighbor interactions: exactly solvable case

Bose–Hubbard models with on-site and nearest-neighbor interactions: exactly solvable case

Abstract We study the discrete spectrum of the two-particle Schrödinger operator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mo stretchy="false">̂</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:math> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>K</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> …