Prefer a chat interface with context about you and your work?
On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients
Let $ p $ be a prime and let $ n $ be an integer with $ (n, p) = 1 $. The Fermat quotient $ q_p(n) $ is defined as \begin{document}$ q_p(n)\equiv \frac{n^{p-1}-1}{p} \ (\bmod\ p), \quad 0\leq q_p(n)\leq p-1. $\end{document} We also define $ q_p(kp) = 0 $ …