Ask a Question

Prefer a chat interface with context about you and your work?

Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi>Sb</mml:mi></mml:mrow><mml:mn>5</mml:mn></mml:msub></mml:math> ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> =K, Rb, Cs)

Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi>Sb</mml:mi></mml:mrow><mml:mn>5</mml:mn></mml:msub></mml:math> ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> =K, Rb, Cs)

We investigate how the real and imaginary charge density waves interplay at the Van Hove singularity on the hexagonal lattices. A phenomenological analysis indicates the formation of $3Q$ complex orders at all three nesting momenta. Under a total phase condition, unequal phases at the three momenta break the rotation symmetry …