On operator error estimates for homogenization of hyperbolic systems with periodic coefficients
On operator error estimates for homogenization of hyperbolic systems with periodic coefficients
In L_2(\mathbb{R}^d;\mathbb{C}^n) , we consider a selfadjoint matrix strongly elliptic second order differential operator \mathcal{A}_\varepsilon , \varepsilon > 0 . The coefficients of the operator \mathcal{A}_\varepsilon are periodic and depend on \mathbf{x}/\varepsilon . We study the asymptotic behavior of the operator \mathcal{A}_\varepsilon ^{-1/2}\sin (\tau \mathcal{A}_\varepsilon ^{1/2}) , \tau\in\mathbb{R} , in …