The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
Abstract Let f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>=</mml:mo> <mml:mo>{</mml:mo> <mml:mi>z</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>C</mml:mi> <mml:mo>:</mml:mo> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> <mml:mo>|</mml:mo> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> , and $${{\mathcal {S}}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>S</mml:mi> </mml:math> be the subclass of normalized univalent functions given by $$f(z)=z+\sum …