Ask a Question

Prefer a chat interface with context about you and your work?

On the optimality of sliced inverse regression in high dimensions

On the optimality of sliced inverse regression in high dimensions

The central subspace of a pair of random variables $(y,\boldsymbol{x})\in \mathbb{R}^{p+1}$ is the minimal subspace $\mathcal{S}$ such that $y\perp\!\!\!\!\!\perp \boldsymbol{x}|P_{\mathcal{S}}\boldsymbol{x}$. In this paper, we consider the minimax rate of estimating the central space under the multiple index model $y=f(\boldsymbol{\beta }_{1}^{\tau }\boldsymbol{x},\boldsymbol{\beta }_{2}^{\tau }\boldsymbol{x},\ldots,\boldsymbol{\beta }_{d}^{\tau }\boldsymbol{x},\epsilon )$ with at most $s$ …