On the trace of random walks on random graphs
On the trace of random walks on random graphs
We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any $\varepsilon>0$ there exists $C>1$ such that the trace of the simple random walk of length $(1+\varepsilon)n\ln{n}$ on the random graph $G\sim G(n,p)$ for $p>C\ln{n}/n$ is, with high probability, Hamiltonian and …