From generalized permutahedra to Grothendieck polynomials via flow polytopes
From generalized permutahedra to Grothendieck polynomials via flow polytopes
We study a family of dissections of flow polytopes arising from the subdivision algebra. To each dissection of a flow polytope, we associate a polynomial, called the left-degree polynomial, which we show is invariant of the dissection considered (proven independently by Grinberg). We prove that left-degree polynomials encode integer points …