Higher projective tensor products of $c_0$
Higher projective tensor products of $c_0$
Let $m,n$ be positive integers with $m \lt n$. Under certain assumptions on the Banach space $X$, we prove that the $n$-fold projective tensor product of $X$, $\widehat {\otimes }{}^n_\pi X$, is not isomorphic to any subspace of any quotient of the $m$-fo