Ask a Question

Prefer a chat interface with context about you and your work?

On product-one sequences over subsets of groups

On product-one sequences over subsets of groups

Abstract Let G be a group and $$G_0 \subseteq G$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>⊆</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> be a subset. A sequence over $$G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> means a finite sequence of terms from $$G_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>G</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> …