Ask a Question

Prefer a chat interface with context about you and your work?

Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>η</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mi>π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>π</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:msup><mml:mi>μ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>μ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>

Observation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>η</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy="false">→</mml:mo><mml:msup><mml:mi>π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>π</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:msup><mml:mi>μ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>μ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>

Using $(1310.6\ifmmode\pm\else\textpm\fi{}7.0)\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $J/\ensuremath{\psi}$ events acquired with the BESIII detector at the BEPCII storage rings, the decay ${\ensuremath{\eta}}^{\ensuremath{'}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ is observed for the first time with a significance of $8\ensuremath{\sigma}$ via the process $J/\ensuremath{\psi}\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\eta}}^{\ensuremath{'}}$. We measure the branching fraction of ${\ensuremath{\eta}}^{\ensuremath{'}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ to be $\mathcal{B}({\ensuremath{\eta}}^{\ensuremath{'}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}})=\phantom{\rule{0ex}{0ex}}(1.97\ifmmode\pm\else\textpm\fi{}0.33(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.19(\mathrm{syst}))\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$, where the first and second uncertainties are statistical …