Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case
Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case
<p style='text-indent:20px;'>This paper is considered with the quasilinear elliptic equation <inline-formula><tex-math id="M1">$ \Delta_{p}u = b(x)f(u),\,u(x)&gt;0,\,x\in\Omega, $</tex-math></inline-formula> where <inline-formula><tex-math id="M2">$ \Omega $</tex-math></inline-formula> is an exterior domain with compact smooth boundary, <inline-formula><tex-math id="M3">$ b\in \rm C(\Omega) $</tex-math></inline-formula> is non-negative in <inline-formula><tex-math id="M4">$ \Omega $</tex-math></inline-formula> and may be singular or vanish on <inline-formula><tex-math …