Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning
Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning
We introduce a fermion-to-qubit mapping defined on ternary trees, where any single Majorana operator on an<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-mode fermionic system is mapped to a multi-qubit Pauli operator acting nontrivially on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo fence="false" stretchy="false">⌈</mml:mo><mml:msub><mml:mi>log</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo></mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo fence="false" stretchy="false">⌉</mml:mo></mml:math>qubits. The mapping has a simple structure and is optimal in the sense that it …