Revisiting unsupervised learning for defect prediction
Revisiting unsupervised learning for defect prediction
Collecting quality data from software projects can be time-consuming and expensive. Hence, some researchers explore "unsupervised" approaches to quality prediction that does not require labelled data. An alternate technique is to use "supervised" approaches that learn models from project data labelled with, say, "defective" or "not-defective". Most researchers use these …