Sum-avoiding sets in groups
Sum-avoiding sets in groups
Let $A$ be a finite subset of an arbitrary additive group $G$, and let $\phi(A)$ denote the cardinality of the largest subset $B$ in $A$ that is sum-avoiding in $A$ (that is to say, $b_1+b_2 \not \in A$ for all distinct $b_1,b_2 \in B$). The question of controlling the size …