Ask a Question

Prefer a chat interface with context about you and your work?

TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE

TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE

In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$ -graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$ . Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of …