Elements Generating a Proper Normal Subgroup of the Cremona Group
Elements Generating a Proper Normal Subgroup of the Cremona Group
Abstract Consider an algebraically closed field ${\textbf{k}}$, and let $\textsf{Cr}_2({\textbf{k}})$ be the Cremona group of all birational transformations of the projective plane over ${\textbf{k}}$. We characterize infinite order elements $g\in \textsf{Cr}_2({\textbf{k}})$ having a power $g^n$, $n\neq 0$, generating a proper normal subgroup of $\textsf{Cr}_2({\textbf{k}})$.