Ask a Question

Prefer a chat interface with context about you and your work?

Small ball probability estimates in terms of width

Small ball probability estimates in terms of width

A certain inequality conjectured by Vershynin is studied. It is proved that for any symmetric convex body $K \subseteq {\mathbb R}^{n}$ with inradius $w$ and $\gamma_{n}(K) \leq 1/2$ we have $\gamma_{n}(sK) \leq (2s)^{w^{2}/4}\gamma_{n}(K)$ for any $s \in