Alternating kinetics of annihilating random walks near a free interface
Alternating kinetics of annihilating random walks near a free interface
The kinetics of annihilating random walks in one dimension, with the half-line x>0 initially filled, is investigated. The survival probability of the nth particle from the interface exhibits power-law decay, S_n(t)~t^{-alpha_n}, with alpha_n approximately equal to 0.225 for n=1 and all odd values of n; for all n even, a …